Relocation of a Ca2+-dependent protein kinase activity during pollen tube reorientation

نویسندگان

  • Moutinho
  • Trewavas
  • Malho
چکیده

Pollen tube reorientation is a dynamic cellular event that is crucial for successful fertilization. We have shown previously that pollen tube orientation is regulated by cytosolic free calcium ([Ca2+]c). In this paper, we studied the activity of a Ca2+-dependent protein kinase during reorientation. The kinase activity was assayed in living cells by using confocal ratio imaging of BODIPY FL bisindolylmaleimide. We found that growing pollen tubes exhibited higher protein kinase activity in the apical region, whereas nongrowing cells showed uniform distribution. Modification of growth direction by diffusion of inhibitors/activators from a micropipette showed the spatial redistribution of kinase activity to predict the new growth orientation. Localized increases in [Ca2+]c induced by photolysis of caged Ca2+ that led to reorientation also increased kinase activity. Molecular and immunological assays suggest that this kinase may show some functional homology with protein kinase C. We suggest that the tip-localized gradient of kinase activity promotes Ca2+-mediated exocytosis and may act to regulate Ca2+ channel activity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

-Dependent Protein Kinase Activity during Pollen Tube Reorientation

Pollen tube reorientation is a dynamic cellular event that is crucial for successful fertilization. We have shown previously that pollen tube orientation is regulated by cytosolic free calcium ([Ca 2 1 ] c ). In this paper, we studied the activity of a Ca 2 1 -dependent protein kinase during reorientation. The kinase activity was assayed in living cells by using confocal ratio imaging of BODIPY...

متن کامل

RHO binding to FAM65A regulates Golgi reorientation during cell migration

Directional cell migration involves reorientation of the secretory machinery. However, the molecular mechanisms that control this reorientation are not well characterised. Here, we identify a new Rho effector protein, named FAM65A, which binds to active RHOA, RHOB and RHOC. FAM65A links RHO proteins to Golgi-localising cerebral cavernous malformation-3 protein (CCM3; also known as PDCD10) and i...

متن کامل

Effect of chronic morphine administration on Ca2+/Calmodulin-Dependent protein kinase IIα activity in rat locus coeruleus and its possible role in morphine dependency

Introduction: The aim of this study was to assess the effect of Ca2+/calmodulin-dependent kinase IIα (CaMKIIα) inhibitor (KN-93) injection into the locus coeruleus (LC) on the modulation of withdrawal signs. We also sought to study the effect of chronic morphine administration on CaMKIIα activity in the rat LC. Methods: The research was based on behavioral and molecular studies. In the behav...

متن کامل

cAMP acts as a second messenger in pollen tube growth and reorientation.

Pollen tube growth and reorientation is a prerequisite for fertilization and seed formation. Here we report imaging of cAMP distribution in living pollen tubes microinjected with the protein kinase A-derived fluorosensor. Growing tubes revealed a uniform distribution of cAMP with a resting concentration of approximately 100-150 nM. Modulators of adenylyl cyclase (AC), forskolin, and dideoxyaden...

متن کامل

A calcium sensor-regulated protein kinase, CALCINEURIN B-LIKE PROTEIN-INTERACTING PROTEIN KINASE19, is required for pollen tube growth and polarity.

Calcium plays an essential role in pollen tube tip growth. However, little is known concerning the molecular basis of the signaling pathways involved. Here, we identified Arabidopsis (Arabidopsis thaliana) CALCINEURIN B-LIKE PROTEIN-INTERACTING PROTEIN KINASE19 (CIPK19) as an important element to pollen tube growth through a functional survey for CIPK family members. The CIPK19 gene was specifi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Plant cell

دوره 10 9  شماره 

صفحات  -

تاریخ انتشار 1998